A comparison of Adomian decomposition method and RK4 algorithm on Volterra integro differential equations of 2nd kind
نویسندگان
چکیده
منابع مشابه
Solution of Fractional Integro-differential Equations by Adomian Decomposition Method
Fractional integro-differential equations arise in the mathematical modelling of various physical phenomena like heat conduction in materials with memory, diffusion processes etc. In this paper, we have taken the fractional integro-differential equation of type Dy(t) = a(t)y(t) + f(t) + ∫ t
متن کاملSolving Differential Equations by Using a Combination of the First Kind Chebyshev Polynomials and Adomian Decomposition Method
In this paper, we are going to solve a class of ordinary differential equations that its source term are rational functions. We obtain the best approximation of source term by Chebyshev polynomials of the first kind, then we solve the ordinary differential equations by using the Adomian decomposition method
متن کاملSeries Solution of Weakly-Singular Kernel Volterra Integro-Differential Equations by the Combined Laplace-Adomian Method
To solve the weakly-singular Volterra integro-differential equations, the combined method of the Laplace Transform Method and the Adomian Decomposition Method is used. As a result, series solutions of the equations are constructed. In order to explore the rapid decay of the equations, the pade approximation is used. The results present validity and great potential of the method as a powerful al...
متن کاملModified Laplace decomposition method for fractional Volterra-Fredholm integro-differential equations
This paper successfully applies the Adomian decomposition and the modified Laplace Adomian decomposition methods to find the approximate solution of a nonlinear fractional Volterra-Fredholm integro-differential equation. The reliability of the methods and reduction in the size of the computational work give these methods a wider applicability. Also, the behavior of the solution can be formall...
متن کاملComparison of Adomian Decomposition and Taylor Expansion Methods for the Solutions of Fractional Integro-Differential Equations
In this paper will be compared between Adomian decomposition method (ADM) and Taylor expansion method (TEM) for solving (approximately) a class of fractional integro-differential equations. Numerical examples are presented to illustrate the efficiency and accuracy of the proposed methods. General Terms Numerical solutions, Fractional integro-differential equations.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: International Journal of Applied Mathematical Research
سال: 2015
ISSN: 2227-4324
DOI: 10.14419/ijamr.v4i4.4965